Quasisymmetric Schur functions and modules of the 0-Hecke algebra
نویسندگان
چکیده
We define a 0-Hecke action on composition tableaux, and then use it to derive 0-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also classify those modules that are tableau-cyclic and likewise indecomposable. Finally, we develop a restriction rule that reflects the coproduct of quasisymmetric Schur functions. Résumé Nous définissons une action 0-Hecke sur les tableaux de composition, et ensuite nous l’utilisons pour dériver les modules 0-Hecke dont la caractéristique quasi-symétrique est une fonction de Schur quasi-symétrique. Nous mettons les modules en relation avec l’ordre de Bruhat faible et les utilisons pour dériver une nouvelle base pour les fonctions quasi-symétriques. Nous classons aussi ces modules qui sont tableau-cycliques et aussi indécomposable. Enfin, nous développons une règle de restriction qui reflète le coproduit des fonctions de Schur quasi-symétriques.
منابع مشابه
Skew Quasisymmetric Schur Functions and Noncommutative Schur Functions
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...
متن کاملSkew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملNoncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at Q = 0
We present representation theoretical interpretations of quasi-symmetric functions and noncommutative symmetric functions in terms of quantum linear groups and Hecke algebras at q = 0. We obtain in this way a noncommutative realization of quasi-symmetric functions analogous to the plactic symmetric functions of Lascoux and Sch utzenberger.The generic case leads to a notion of quantum Schur func...
متن کامل0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra
We define an action of the 0-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their (q, t)-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identi...
متن کاملQuasisymmetric Schur functions
We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur fun...
متن کامل